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A granuloma is a collection of macrophages that contains bacteria or other foreign
substances that the body’s immune response is unable to eliminate. In this paper we
present a simple mathematical model of radially symmetric granuloma dynamics. The
model consists of a coupled system of two semi-linear parabolic equations for the
macrophage density, and the bacterial density. The boundary of the granuloma is free.
This simple framework makes it possible to conduct a mathematical analysis of the
system dynamics. In particular, we show that the model system has a unique solution,
and that, depending on the biological parameters; the bacterial load either disappears
over time or persists. We use numerical methods to establish the existence of stationary
solutions and examine how a stationary solution changes with the reproductive rate of the
bacteria. These simulations show that the structure of the granuloma breaks down as the
reproductive rate of the bacteria increases.

© 2013 Published by Elsevier Inc.

1. Introduction

A granuloma is a collection of macrophages that contains bacteria or other foreign substances. Granulomas occur in a
wide variety of diseases including, for example, rheumatoid arthritis, schistosomiasis and Crohn’s disease. A typical example
is the granuloma of tuberculosis which prevents residual bacteria from re-infecting the body.

In order to create a detailed, disease-specific granuloma model, one needs to consider, in addition to macrophages and
bacteria, pathogen-specific cytokines, the activation state of various immune cells, and the dynamics of both extracellular
and intracellular bacteria. This was done in the case of tuberculosis by D. Gammack et al. [1] using a PDE model, by
J.L. Segoria-Juarez et al. [4] using an agent-based approach, and by S. Marino et al. [3] using a hybrid multi-compartment
model. In the present paper we introduce a simple model of a generic granuloma. The model explicitly describes the
interactions between bacteria and macrophages. Implicit in the model is the assumption that the cytokines and T cells
are present in abundance, i.e. we assume that all of the macrophages have been activated by IFN-γ secreted by the T
cells. Similarly, the model does not consider intracellular bacteria, although several types of granulomas, including those of
tuberculosis, are caused by intracellular pathogens. We assume that the granuloma occurs in a region Ω(t) which varies
in time. Inside Ω(t) the macrophage cell density, M , and the bacteria cell density, B , satisfy a system of PDEs. We also
assume that the cellular density of macrophage and bacteria is fixed, thus our model does not account for necrotic cells
and debris that may be present in several types of granulomas. Under the assumption that the cellular density is fixed, the
free boundary of Ω(t) moves with a velocity that is determined by the proliferation of the bacteria, the immigration of
macrophages, and the death of both cell types.
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The aim of this paper is to initiate rigorous mathematical analysis of the dynamics of granulomas as free boundary
problems. Accordingly, in the present paper, we consider a very simple model of a generic radially symmetric granuloma,
deferring the study of more inclusive models to future work. We prove the existence and uniqueness, and exhibit steady
state solutions numerically.

2. Theory

The variable x varies in a bounded domain Ω(t) in R
3 with boundary Γ (t). We introduce the variables M(x, t) and

B(x, t) to represent the density of macrophages and bacteria respectively. Due to cellular proliferation and death there is
a velocity field �v(x, t) which is assumed to be common to both macrophages and bacteria. By conservation of mass, for
x ∈ Ω(t) and t > 0 we have

∂M

∂t
− �M + ∇ · (M�v) = −μ1M B − αM, (1)

∂ B

∂t
− (1 + δ)�B + ∇ · (B�v) = −μ2M B + λB, (2)

where μ1 is the rate at which macrophages are killed by bacteria, μ2 is the rate at which bacteria are killed by macrophages,
λ is the bacterial growth rate, and α is the rate at which macrophages undergo apoptosis. Intracellular bacteria do not
disperse on their own but are dispersed through the dispersal of the cells that contain them, while extracellular bacteria,
being smaller than macrophages, have a larger diffusion coefficient than macrophages. Hence, we consider the case where
δ � 0; our results can be extended, with minor changes, to the case where δ < 0. In addition, we assume that the cells are
evenly distributed in Ω(t) so that, after normalization,

M + B = 1 for x ∈ Ω(t), t > 0. (3)

Adding Eqs. (1) and (2) and using (3), we derive the following equation for �v:

∇ · �v = −δ�M + λ − (λ + μ + α)M + μM2, (4)

where μ = μ1 + μ2. In addition, replacing B with 1 − M in (1) yields the following equation for M:

∂M

∂t
− �M + ∇ · (M�v) = −μ1M(1 − M) − αM. (5)

In this paper we consider only the case of radially symmetric granulomas. In this case �v is determined by (4) together
with �v(0) = 0. In the non-radially symmetric case one would need to impose a constitutive condition on the tissue where
the granuloma develops. Such a condition could be the porous medium assumption characterized by Darcy’s Law: �v = ∇p,
where p is the internal pressure, and p satisfies an appropriate boundary condition on the boundary Γ (t). This more general
granuloma model could be considered in future work.

It is easily seen that if M satisfies (5) with �v defined by (4), then the pair (B, M) satisfies the system (1)–(2). In the
sequel we shall primarily use the version (4)–(5) of the system (1)–(3).

We impose the boundary conditions

∂M

∂ν
= β(1 − M) on Γ (t), (6)

vΓ (t) = �v · ν on Γ (t), (7)

where ν is the outward normal direction, vΓ (t) is the velocity of the free boundary, Γ (t), in the direction ν , and β > 0.
Finally, we prescribe initial conditions:

Ω(t)|t=0 = Ω0, M(x,0) = M0, 0 � M0 � 1. (8)

Note that (6) implies (by (3)) that

∂ B

∂ν
+ βB = 0 on Γ (t). (9)

In addition, (8) implies that

0 � B(x,0) � 1. (10)

By the maximum principle for (1) and (2) we then have that

M(x, t) � 0 and B(x, t) � 0.

Thus by, (3), the solution of (4)–(5) satisfies

0 � M(x, t) � 1. (11)
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2.1. The radially symmetric case

We rewrite the system in the radially symmetric case. Using the notation r = |x|,
�v = v(r, t)

x

r
, M = M(r, t), Ω(t) = {

r < R(t)
}
, and Γ (t) = {

r = R(t)
}
,

(4)–(8) take the following form:

∂M

∂t
− 1

r2

∂

∂r

(
r2 ∂M

∂r

)
+ 1

r2

∂

∂r

(
r2 vM

) = −μ1M(1 − M) − αM, (12)

1

r2

∂

∂r

(
r2 v

) = − δ

r2

∂

∂r

(
r2 ∂M

∂r

)
+ λ − (λ + μ + α)M + μM2, (13)

v(0, t) = 0,
∂M

∂r
(0, t) = 0, and

∂M

∂r

(
R(t), t

) = β(1 − M), (14)

R(0) = R0, M(r,0) = M0(r), (15)

and

dR(t)

dt
= v

(
R(t), t

)
. (16)

It follows that

v(r, t) = −δ
∂M

∂r
+

r∫
0

s2

r2

(
λ − (λ + μ + α)M + μM2)ds. (17)

The radially symmetric problem can also be converted to a fixed boundary problem by setting

yi = xi

R(t)
, M̂(y, t) = M(x, t), and �̂v(y, t) = �v(x, t),

so that

∂M

∂t
= ∂ M̂

∂t
−

3∑
i=1

yi Ṙ(t)

R(t)

∂ M̂

∂ yi
,

∂M

∂xi
= 1

R(t)

∂ M̂

∂ yi
.

Thus, after dropping the “ ˆ ”, the system (4)–(8) takes the form:

∂M

∂t
− 1

R2
�M − Ṙ

R
�y · ∇M + 1

R
∇ · (�vM) = −μ1M(1 − M) − αM, (18)

1

R
∇ · �v = − δ

R2
�M + λ − (λ + μ + α)M + μM2, (19)

with the boundary conditions

v(0, t) = 0, and
1

R

∂M

∂ν
(y, t) = β(1 − M) for |y| = 1, (20)

initial conditions

R(0) = R0 and M(y,0) = M0(y), (21)

and the free boundary dynamical equation

dR(t)

dt
= v(y, t) for |y| = 1. (22)

When expressed in spherical coordinates (ρ, t), ρ = |y|, M = M(ρ, t), (18)–(22) become

∂M

∂t
− 1

ρ2 R2

∂

∂ρ

(
ρ2 ∂M

∂ρ

)
− ρ Ṙ

R

∂M

∂ρ
+ 1

ρ2 R

∂

∂ρ

(
ρ2 vM

) = −μ1M(1 − M) − αM, (23)

1

ρ2 R

∂

∂ρ

(
ρ2 v

) = − δ

ρ2 R2

∂

∂ρ

(
ρ2 ∂M

∂ρ

)
+ λ − (λ + μ + α)M + μM2, (24)

v(0, t) = 0,
∂M

∂ρ
(0, t) = 0, and

1

R

∂M

∂ρ
(1, t) = β(1 − M), (25)

R(0) = R0, M(ρ,0) = M0(ρ), (26)



A. Friedmen et al. / J. Math. Anal. Appl. 412 (2014) 776–791 779
and

dR(t)

dt
= v(1, t). (27)

From (24) it follows that

v(ρ, t) = − δ

R

∂M

∂ρ
+ R(t)

1∫
0

s2

ρ2

(
λ − (λ + μ + α)M + μM2)ds. (28)

From (16), (17) and (14) we see that

dR(t)

dt
= v

(
R(t), t

) = −δβ(1 − M) +
R∫

0

s2

R2

(
λ − (λ + μ + α)M + μM2)ds.

Hence

−δβ − cR <
dR

dt
< C R,

where c and C are positive constants, so that

R(t)� R0eCt .

Hence, for some positive constant c0 and any T > 0,

R(t)� R0eC T ,

−c0eC T � dR

dt
� C R0eC T for 0 < t � T , (29)

provided R(t) remains positive for 0 < t < T . R(t), however, may possibly converge to zero in finite time.

Definitions. By a smooth solution of (12)–(16), for 0 � t � T , we understand a solution with M , ∂M
∂r , ∂2 M

∂r2 , ∂M
∂t in

C
α, α

2
{0�r�R(t), 0�t�T } , and Ṙ in C

α
2[0,T ] . Equivalently, the solution of (18)–(22) is said to be smooth if ∂M

∂ yi
, ∂2 M

∂ yi y j
, ∂M

∂t are in

C
α, α

2
{|y|�1, 0�t�T } , and Ṙ is in C

α
2[0,T ] . In the sequel, all solutions are taken to be smooth solutions. A smooth solution is said

to be “global” if it exists for 0 � t < T∞ , where either T∞ = ∞ or T∞ < ∞ and either lim supt→T∞ |Mr |(r, t) → ∞ or
lim inft→T∞ R(t) = 0.

3. Results

3.1. A priori estimates

Lemma 1.

(i) If

−k1 �
∂M0

∂r

for 0 � r � 1, where k1 � 0, then any smooth solution of (12)–(16) for 0 � t � T satisfies the inequality

−k1eγ t � ∂M

∂r
(r, t)

for 0 � r � 1, 0 � t � T , where γ is a positive constant independent of k1 and T .
(ii) If δ = 0 and

∂M0

∂r
� k2

for 0 � r � 1, where k2 � 0, then any smooth solution of (12)–(16) for 0 � t � T satisfies the inequality ∂M
∂r � k2eγ t where γ is

a positive constant independent of k2 and T .
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Proof. Consider case (i). Substituting Eq. (13) into (12) we get

∂M

∂t
− 1 + δM

r2

∂

∂r

(
r2 ∂M

∂r

)
+ v

∂M

∂r
+ c(M)M = 0, (30)

where

c(M) = (λ + α + μ1) − (λ + α + 2μ1 + μ2)M + μM2. (31)

Differentiating (30) in r and setting N = ∂M
∂r we get the equation

∂N

∂t
− (1 + δM)

(
∂2N

∂r2
+ 2

r

∂N

∂r
− 2

r2
N

)
− δN

(
2

r
N + ∂N

∂r

)
+ ∂v

∂r
N + v

∂N

∂r
+ ∂

∂r

(
c(M)M

) = 0.

From (17) we have the estimate

∂v

∂r
= −δ

∂N

∂r
+ O (1).

Substituting this into the previous equation we get

∂N

∂t
− (1 + δM)

(
∂2N

∂r2
+ 2

r

∂N

∂r

)
− δN

∂N

∂r
+ v

∂N

∂r
+ (1 + δM)

2

r2
N + f N = 2δ

r
N2,

where

f = − ∂

∂M

(
c(M)M

) − O (1). (32)

We introduce the function w(r, t) = e−γ t N(r, t), where γ is large enough so that f + γ > 0. Then w satisfies:

∂ w

∂t
− (1 + δM)

(
∂2 w

∂r2
+ 2

r

∂ w

∂r

)
− δN

∂ w

∂r
+ v

∂ w

∂r
+ (1 + δM)

2

r2
w + ( f + γ )w = 2δ

r
e−γ t w2,

and, by the maximum principle, w cannot take a negative minimum in the domain {0 < r < R(t), 0 < t < T }. Since also
w = e−γ t(1 − M) on r = R(t), w cannot take a negative minimum on r = R(t). Hence w can take a nonpositive minimum
only at t = 0 and assertion (i) of the lemma follows.

The proof of (ii) is similar. �
Applying Lemma 1 to the case k1 = 0 we get:

Theorem 1. If ∂M0
∂r � 0 for 0 � r � R0 then

∂M

∂r
� 0

for 0 � r � R(t), 0 � t � T .

3.2. Existence and uniqueness

We shall first prove local existence and uniqueness using Schauder estimates and W 2,p estimates. We assume:

0 � M0 � 1, M0 ∈ C2+α
r [0, R0], and

∂M0

∂r
= β(1 − M0) at r = R0. (33)

We introduce sets

XT := {
R(t): R(0) = R0,

∥∥Ṙ(t)
∥∥

Cα(0,T )
� L1

}
,

Y T := {
M(r, t): 0 � M(r, t) � 1; M(r,0) = M0(r); ‖M‖ = |M|

C
α, α2
r,t

+ |Mr |
C

α, α2
r,t

� L2
}
,

where T is sufficiently small and L1, L2 are constants to be determined later.
For a fixed R in XT we define a mapping S : M → M̂ as follows: M̂ is the solution of

∂ M̂ − 1 + δM
2

∂
(

r2 ∂ M̂
)

+ v
∂ M̂ + c(M)M̂ = 0 (34)
∂t r ∂r ∂r ∂r
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for 0 < r < R(t), 0 < t � T , with

v(0, t) = 0, M̂(r,0) = M0(r),
∂ M̂

∂r
(0, t) = 0,

∂ M̂

∂r

(
R(t), t

) = β(1 − M̂), (35)

where v(M) is defined as in (17).
Since Ṙ ∈ C

α
2 , we can apply the Schauder estimates to obtain the estimate

|M̂|
C2+α,1+ α

2
� L, (36)

where L = L(L1, L2) depends on L1 and L2. Hence, by interpolation [2] (Prop. 4.2, p. 48), for any function u = u(x, t),

‖u‖
C

α, α
2

x,t

� ‖u‖
α

1+β

C
1+β,

β
2

x,t

‖u‖
1+β−α

1+β

L∞ ∀β > 0.

Applying this inequality to u = M̂ − M0 and to ∂u
∂r , we get

|M̂|
Cα, α2

+ |M̂r |Cα, α2
� 2|M0|C2+α + c0T γ L

for some positive constants c0 and γ . Hence if L2 = 2|M0|C2+α + 1 and T is sufficiently small then M̂ = S(M) ∈ Y T .
Similarly we can show that S is a contraction. The proof is obtained by estimating the difference M̂1 − M̂2 from Eq. (34)

for M1 and M2, using the estimates:∣∣v(M1) − v(M2)
∣∣
Cα, α

2
� c1‖M1 − M2‖,∣∣c(M1) − c(M2)

∣∣
Cα, α

2
� c2‖M1 − M2‖.

Since S is a contraction on Y T for T sufficiently small, given R(T ) ∈ XT there exists a unique solution M(r, t) of (12)–(15).
We proceed to solve for R̂:

dR̂

dt
= v

(
M

(
R(t), t

)
, t

)
, R̂(0) = R0

and define a mapping V by V R = R̂ . We claim that V is a contraction on XT and thus has a unique fixed point.
It will be convenient to consider the equivalent fixed boundary system (23)–(27).
Given R1 and R2 let M1, v1 and M2, v2 solve the corresponding system (23)–(26). To estimate M1 − M2 we move all

the terms with R1 − R2, Ṙ1 − Ṙ2 to the right-hand side and apply the Schauder estimates to get

|M1 − M2|C2+α,1+ α
2
� C |Ṙ1 − Ṙ2|C

α
2
.

By interpolation, as before,

|M1,r − M2,r |Cα, α2
� c1T γ |M1 − M2|C2+α,1+ α

2
� c0C T γ |Ṙ1 − Ṙ2|C

α
2
. (37)

Let t1 < t < t2 and set R(s) = R1(s) − R2(s), R∗ = maxt1�t�t2 |R(s)|, then

d

dt

(
R̂(t1) − R̂(t2)

) = [
v2

(
R2(t2), t2

) − v2
(

R2(t2) − R∗, t2
)]

− [
v1

(
R1(t2), t2

) − v1
(

R2(t2) − R∗, t2
)]

− [
v2

(
R2(t1), t1

) − v2
(

R2(t1) − R∗, t1
)]

+ [
v1

(
R2(t1), t1

) − v1
(

R2(t1) − R∗, t1
)]

+ [
(v1 − v2)

(
R2(t2) − R∗, t2

) − (v2 − v1)
(

R(t2) − R∗, t1
)]

. (38)

Recalling (17) and using (37), we can estimate each of the five terms in brackets by c2T γ |R(t)|
C

α
2

and conclude that

d

dt

∣∣R̂(t1) − R̂(t2)
∣∣
C

α
2

t

� 5c2T γ
∣∣R(t)

∣∣
C

α
2

t

.

It follows that the mapping V : R → R̂ is a contraction if T is sufficiently small. The fact that V maps XT into itself follows
from the above estimate with R1(t) ≡ R0 provided L1 is sufficiently large.

We have thus completed the proof of local existence and uniqueness.
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To prove global existence and uniqueness it suffices to establish, for any T > 0, the estimate,

|Ṙ|
C

α
2

t

� L0 (39)

for any solution which exists for 0 � t � T with R(T ) > 0, where L0 = L0(T ) is a bounded function of T .
By Lemma 1 if δ = 0 then Mr is bounded by a constant L̄ and then so is v . Hence we can use the W 2,p estimate to

conclude that M , ∂M
∂t , ∂M

∂ρ , ∂2 M
∂ρ2 are bounded in Lp uniformly in t by another constant L̄. It follows that

∣∣∣∣∂M

∂ρ

∣∣∣∣
Cα, α

2

� L̄. (40)

Proceeding similarly to (38) we deduce that

∣∣Ṙ(t2) − Ṙ(t1)
∣∣ � c|t2 − t1| α

2 .

In summary:

Theorem 2. Under the assumption (33) there exists a unique global solution (i.e. for 0 � t < T∞) of (12)–(16) with Ṙ(t) in C
α
2 .

Furthermore, if δ = 0 and T∞ < ∞ then lim inft→T∞ R(t) = 0.

In the case δ > 0, we are unable to rule out the possibility that R(t) remains uniformly bounded by a positive constant
as t → T∞ , while Mr(r j, t j) → ∞ for sequences 0 < r j < R(t j), t j → ∞.

4. Properties of the solution

We are interested in determining the asymptotic behavior of the granuloma as t → T∞ . In particular, we would like to
determine conditions on the parameters for which either the bacteria and the macrophages coexist, or one of the two goes
extinct as t → T∞ .

In this section we give two examples. Theorem 3 gives conditions under which B(r, t) → 0 as t → ∞, and Theorem 4
gives conditions under which the bacterial load increases over time and lim supt→∞ R(t) = ∞. In the next section, we
demonstrate numerically that there exist stationary solutions where both M and B are nonzero; it remains an open problem
to prove this result rigorously.

Theorem 3. If λ + α < μ2 and

(
1 − M0(r)

)
� ε where ε � μ2 − (λ + α)

μ
, (41)

then

(
1 − M(r, t)

)
< εe−γ t on 0 < r < R(t), 0 < t < T∞ (42)

for any γ < c(1 − ε), where c = μ2 − (λ + α) − με � 0.

Proof. Suppose the assertion is not true. Let B(r, t) = (1 − M(r, t)). Then B satisfies

∂ B

∂t
− (1 + δM)�B + v(M)

∂ B

∂r
+ (B − 1)B(μ2 − λ − α − μB) = 0 (43)

with the boundary condition

∂ B

∂r
+ βB = 0 on r = R(t). (44)

Let t0 denote the first time such that (42) is violated, and let w = εe−γ t . Note that

B(r, t) < w for 0 � r � R(t), 0 < t < t0, (45)

B(r0, t0) = w(t0) for some 0 � r0 � R(t0), (46)

and w satisfies
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∂ w

∂t
− (1 + δM)�w + v(M)

∂ w

∂r
+ (w − 1)w(μ2 − λ − α − μw)

= −γ w + w(1 − w)
(
μ2 − λ − α − μεe−γ t)

� −γ w + w(1 − w)(μ2 − λ − α − με)

= w
(
c(1 − w) − γ

)
= w

(
c
(
1 − εe−γ t) − γ

)
� w

(
c(1 − ε) − γ

)
> 0,

and

∂ w

∂r
+ βw = βw > 0 on r = R(t).

Hence, by the comparison principle for parabolic equations B(r, t) < w(t) for all 0 � r � R(t), 0 < t � t0, which is a contra-
diction to (46). �
Remark 1. Suppose that ∂M0

∂r � 0 so that ∂M
∂r � 0 (by Theorem 1). Set γ = μ2 − (λ + α). If γ > 0 (as in Theorem 3) and ε is

sufficiently small then from (17) and (14) we get

Ṙ = v
(

R(t), t
)
�

(
−α

3
+ O (ε)

)
R(t).

Hence

Ṙ < 0.

Furthermore in (32)

f = σ + O (ε),

where σ = α
3 − γ , can be positive or negative. If ∂M0

∂r � η where

(1 + δ)
2

r2
+ σ − 2δ

r
η > 0 for 0 < r < R0,

then, by the maximum principle, ∂M
∂r � η for all t < T∞ . In this case Mr(r, t) remains uniformly bounded, T∞ = ∞, and

R(t) ↓ 0 as t ↑ ∞.

Theorem 3 shows that M0(r) ≡ 1, B0(r) ≡ 0, is an asymptotically stable solution. In the next theorem we show, under
different assumptions on the parameters, that there exist granulomas where the bacterial load remains uniformly positive.

Theorem 4. If ∂M0
∂r � 0, λ > μ2 and β = 0 then

R(T )∫
0

r2 B(r, T )dr �
R0∫

0

r2 B(r,0)dr +
T∫

0

R(t)∫
0

r2(λ − μ2)B(r, t)dr dt. (47)

for 0 � T < T∞ .

Note that if B(r,0) ≡ 0 then by (47),

R(t)∫
0

r2 B(r, t)dr � c0e(λ−μ2)t,

for c0 = ∫ R(0)

0 r2 B(r,0)dr. Hence, by (47),

R3(T ) � c1e(λ−μ2)T

for c1 = 3c0 .

λ−μ2
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Proof of Theorem 4. Note that B satisfies

∂ B(r, t)

∂t
− (1 + δ)

1

r2

∂

∂r

(
r2 ∂ B

∂r

)
+ 1

r2

∂

∂r

(
r2 B v

) = −μ2M B + λB, (48)

∂ B(r, t)

∂t
− (1 + δ)

1

r2

∂

∂r

(
r2 ∂ B

∂r

)
+ 1

r2

∂

∂r

(
r2 B v

) = μ2 B2 + (λ − μ2)B (49)

with the boundary conditions

∂ B

∂r
(r,0) = 0,

∂ B

∂r
+ βB = 0 on r = R(t). (50)

If β = 0 we have that

R(T )∫
0

r2 B(r, T )dr −
R0∫

0

r2 B(r,0)dr =
T∫

0

R2(t)B
(

R(t), t
)

v
(

R(t), t
)

dt

+
T∫

0

R2(t)

(
(1 + δ)

∂ B

∂r

(
R(t), t

) − B
(

R(t), t
)

v
(

R(t), t
))

dt

+
T∫

0

R(t)∫
0

r2 B(r, t)
(
λ − μ2M(r, t)

)
dr dt

=
T∫

0

R(t)∫
0

r2[μ2 B2(r, t) + (λ − μ2)B(r, t)
]

dr dt. �

Remark 2. If δ = 0 and λ + α < μ2, Theorem 3 shows that the bacterial density decreases exponentially in time for 0 <

t < T∞ and, by Remark 1, T∞ = ∞ if ε is sufficiently small. On the other hand, if δ = β = 0 and λ > μ2, Theorem 4
shows that the bacterial load does not decrease and the granuloma grows. These results suggest that for β = δ = 0 and
μ2 < λ < μ2 + α there should be stationary granulomas where macrophages and bacteria coexist. In the next section we
exhibit stationary solutions numerically and also discuss how granulomas satisfying the conditions of Theorems 3 and 4
evolve over time.

Theorem 5. If ∂M0
∂r � 0, λ > μ2 , δ = 0,

R(0) >
3β

λ − μ2
, (51)

and

R0∫
0

r2(λ + μ + α)B(r,0)dr >
R3

0

3
(μ + α) (52)

then

R(T )∫
0

r2 B(r, T )dr �
R0∫

0

r2 B(r,0)dr +
T∫

0

R(T )∫
0

r2μ2 B2(r, t)dr dt (53)

and R(T ) >
3β

λ−μ2
, for 0 � T < T∞ .

Proof. Setting δ = 0 and integrating (49) over (r, t) we find that

R(T )∫
r2 B(r, T )dr −

R0∫
r2 B(r,0)dr =

T∫
R2(t)B

(
R(t), t

)
v
(

R(t), t
)

dt
0 0 0



A. Friedmen et al. / J. Math. Anal. Appl. 412 (2014) 776–791 785
+
T∫

0

R2(t)

(
(1 + δ)

∂ B

∂r

(
R(t), t

) − B
(

R(t), t
)

v
(

R(t), t
))

dt

+
T∫

0

R(t)∫
0

r2 B(r, t)
(
λ − μ2M(r, t)

)
dr dt

= −β

T∫
0

R2(t)B
(

R(t), t
)

dt

+
T∫

0

R(t)∫
0

r2[μ2 B2(r, t) + (λ − μ2)B(r, t)
]

dr dt

�
T∫

0

−R2(t)βB
(

R(t), t
)

dt +
T∫

0

(λ − μ2)B
(

R(t), t
) R3(t)

3
dt

+
T∫

0

R(t)∫
0

r2μ2 B2(r, t)dr dt

=
T∫

0

[
(λ − μ2)

3
R(t) − β

]
R2(t)B

(
R(t), t

)
dt

+
T∫

0

R(t)∫
0

r2μ2 B2(r, t)dr dt. (54)

Note that

t∫
0

[
(λ − μ2)

3
R(s) − β

]
R2(s)B

(
R(s), s

)
ds > 0 (55)

implies

R(t)∫
0

r2 B(r, t)dr >

R0∫
0

r2 B(r,0)dr +
T∫

0

R(t)∫
0

r2μ2 B2(r, t)dr dt. (56)

Hence it suffices to show that (55) holds for all t > 0.
Since

R(0) >
3β

λ − μ2
, (57)

if (55) does not hold for all t < T∞ there exists a smallest T ∗ > 0 such that (55) holds for all t < T ∗ , but

T ∗∫
0

[
(λ − μ2)

3
R(t) − β

]
R2(t)B

(
R(t), t

)
dt = 0. (58)

We claim that R(t) >
3β

λ−μ2
for t ∈ [0, T ∗]. Since δ = 0,

R ′(t) = v
(

R(t), t
)
� 1

R2(t)

R(t)∫
0

r2((λ + μ + α)B(r, t) − (μ + α)
)

dr, (59)

and by assumption (52), R ′(0) > 0. Hence, there exists an ε > 0 so that
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R(t) > R0 >
3β

λ − μ2
(60)

for t ∈ [0, ε). We claim that R(t) > R0 for all t < T ∗ . Indeed, otherwise there exists a smallest t1 such that (59) holds for all
t < t1 and R(t1) = R0. Then R ′(t1)� 0 and, by (59),

R(t1)∫
0

r2(λ + μ + α)B(r, t1)dr <
R3(t1)

3
(μ + α).

But since (55) and inequality (56) hold for all 0 < t < T ∗ ,

R3
0

3
(μ + α) <

R0∫
0

r2(λ + μ + α)B(r,0)dr <

R(t1)∫
0

r2(λ + μ + α)B(r, t1)dr,

where the first inequality is the assumption (52). It follows that

R(t1) > R0, (61)

which is a contradiction. Hence, R(t) > R0 >
3β

λ−μ2
for t ∈ [0, T ∗). It follows that

T ∗∫
0

[
(λ − μ2)

3
R
(
T ∗) − β

]
R2(T ∗)B

(
R
(
T ∗), T ∗)dt > 0,

a contradiction to (58). We have thus completed the proof of (55) and (56) and, at the same time, established the estimate
R(t) >

3β
λ−μ2

. �
4.1. Numerical simulations

In one dimension, the moving boundary problem can be solved by mapping the moving domain [0, R(t)] into the fixed
domain [0,1] by ρ = r

R(t) ; see (23) and (24).

∂M

∂t
+

(
v − ρ Ṙ(t)

R(t)
− 2

ρR(t)2

)
∂M

∂ρ
− 1

R2

∂2M

∂ρ2
= − 2v

ρR
M − 1

R

∂v

∂ρ
M + E(M),

∂

∂ρ

(
ρ2 v

) = − δ

R

∂

∂ρ

(
ρ2 ∂M

∂ρ

)
+ ρ2 R F (M), (62)

where E(M) = −μ1M(1 − M)−αM and F (M) = λ− (λ+μ+α)M +μM2. Let us denote the numerical solution at the n-th
time step by(

Mn
j , V n

j , Rn
j

)
at x j = ( j − 1)h, 1 � j � J with ( J − 1)h = 1. We first compute V n+1 by the trapezoidal rule:

ρ2
j+1 V n+1

j+1 − ρ2
j V n+1

j = Mc + Rn

2
�ρ

[
ρ2

j+1 F n
j+1 + ρ2

j F n
j

]
,

where

Mc = − δ

R

[
ρ2

j+1

Mn
j+2 − Mn

j

2�ρ
− ρ2

j

Mn
j+1 − Mn

j−1

2�ρ

]
for j � J

and

Mc = − δ

R

[
ρ2

j+1 Rnβ
(
1 − Mn

j

) − ρ2
j

Mn
j+1 − Mn

j−1

2�ρ

]
for j = J

is the central scheme approximation for the first term on the right-hand side. The Euler method is used to update the
radius:

Rn+1 = Rn + �tV n+1(1, t).
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We write the advection–diffusion–reaction equation in the following form:

∂M

∂t
+ A1

∂M

∂ρ
+ A2

∂2M

∂ρ2
= r(M, v, R)M,

where

A1 = v − ρ Ṙ(t)

R(t)
− 2

ρR(t)2
, A2 = − 1

R2
,

and

r(M, v, R) = −
(

2v

ρR
+ 1

R

∂v

∂ρ
+ μ1(1 − M) + α

)
.

We use the scheme

Mn+1
j − Mn

j

�t
+ (A1)

n+1
j

Mn+1
j+1 − Mn+1

j−1

2�ρ
+ (A2)

n+1
j

Mn+1
j+1 − 2Mn+1

j + Mn+1
j−1

(�ρ)2
= r

(
Mn

j , V n+1
j , Rn+1)Mn+1

j , (63)

where the derivative term, ∂v
∂ρ , in r(M, v, R) is approximated by the forward difference, i.e.

∂v

∂ρ
≈ V n+1

j+1 − V n+1
j

�ρ
.

This discretized equation (63) can be written in the form

b j M
n+1
j−1 + d j M

n+1
j + a j M

n+1
j+1 = S j, j = 2, . . . , J − 1,

where

a j =
(

(A1)
n+1
j

�ρ
+ 2

(A2)
n+1
j

(�ρ)2

)
�t,

b j =
(

− (A1)
n+1
j

�ρ
+ 2

(A2)
n+1
j

(�ρ)2

)
�t,

d j = 2 − 2

(
2
(A2)

n+1
j

(�ρ)2
+ r

(
Mn

j , V n+1
j , Rn+1))�t,

S j = 2Mn
j .

For j = 1, we have the boundary condition

Mn+1
0 = Mn+1

2 ,

which implies that

a1 =
(

4
(A2)

n+1
1

(�ρ)2

)
�t,

d1 = 2 − 2

(
2
(A2)

n+1
1

(�ρ)2
+ r

(
Mn))�t,

S1 = 2Mn
1.

For j = J , we have the boundary condition

1

Rn+1

Mn+1
J+1 − Mn+1

J−1

2�ρ
= β

(
1 − Mn+1

j

)
.

Thus,

b J =
(

4
(A2)

n+1
j

(�ρ)2

)
�t,

d J = 2 − 2

(
2
(
1 + �ρβRn+1) (A2)

n+1
j

(�ρ)2
+ r

(
Mn) + (A1)

n+1
J βRn+1

)
�t,

S J = 2Mn
j − 2�t

(
(A2)

n+1
J

2
βRn+1 + (A1)

n+1
J βRn+1

)
.

�ρ
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Fig. 1. The intersection points for Γ1 and Γ2 for λ = 0.375 : 0.125 : 1, μ1 = 0.4, μ2 = 0.6, δ = 0.05, α = 0.5, β = 0.8. As λ increases, the radius, R , decreases
and the concentration of macrophages at the core of the granuloma, M0, increases.

To find the stationary state solution, i.e. M and v which satisfy

∂2M

∂r2
− M

∂v

∂r
=

(
v − 2

r

)
∂M

∂r
− E(M) + 2

r
vM,

∂v

∂r
= 1

1 + δM

[
δE(M) + F (M) − δv

∂M

∂r
− 2

(1 + δM)v

r

]
,

we first write the problem as a system of first-order equations[ u′
1

u′
2 − u1u′

3
u′

3

]
=

⎡
⎣ u2

(u3 − 2
r )u2 + 2

r u3u1 − E(u1)
1

1+δu1
[δE(u1) + F (u1) − δu3u2 − 2 (1+δu1)u3

r ]

⎤
⎦

where u1 = M , u2 = ∂M
∂r , u3 = v , and the initial conditions are[ u1(0)

u2(0)

u3(0)

]
ρ=0

=
[ M0

0
0

]
.

For a given set of the parameters δ, λ, μ, α, and β , we solve the system of equations in the interval r ∈ [0, R] with various
M0 and R and then find the intersection points of the curves Γ1 and Γ2, which satisfy

Γ1 : u2(1) − β
(
1 − u1(1)

) = 0 (boundary conditions for M),

Γ2 : u3(1) = 0 (stationary free boundary).

Intersection points of these two curves represent stationary solutions. After finding an intersection point, (M̃0, R̃), we can
then find the corresponding solution M = u1 and v = u3. Some stationary points and the corresponding solutions are
shown in Figs. 1 and 2. Numerical simulations (not shown here) indicate that the stationary solutions shown in Figs. 1
and 2 are not stable. For the parameter values satisfying the conditions of Theorem 4 there is no stationary solution since
lim supt→∞ R(t) = ∞. In the simulations of Figs. 1 and 2 the parameter β is nonzero, so that the conditions of Theorem 4
are not satisfied.
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Fig. 2. The corresponding stationary solutions for λ = 0.375 : 0.125 : 1, μ1 = 0.4, μ2 = 0.6, δ = 0.05, α = 0.5, β = 0.8. As λ increases the structure of the
granuloma breaks down in that macrophages infiltrate its core.

It is interesting to consider how stationary solutions change as a function of the biological parameters. Figs. 1 and 2
illustrate how the location of a stationary point (in (R, M) space) and the corresponding stationary solution change as a
function of λ (the reproductive rate of the bacteria). When λ is small, bacteria are concentrated at the granuloma’s core
while macrophages are primarily found at its boundary. As λ increases the granuloma becomes smaller and less structured
with macrophages distributed throughout. We interpret this to mean that the faster growing bacteria require a greater
concentration of activated macrophages for containment. Higher macrophage concentrations, in turn, result in a smaller
granuloma with a lower bacterial load.

Next we compare time dependent solutions that satisfy the conditions of Theorem 3 to those that satisfy the conditions
of Theorem 4. In Fig. 3, we show the evolution of the time dependent solution of the system (62) with parameters that
satisfy the conditions of Theorem 3 for ε = 0.25: λ = 0.5, μ1 = 0.4, μ2 = 1.5, δ = 0.05, α = 0.5 and β = 0.8. The initial
radius is chosen as R(0) = 4.5374 and the initial macrophage concentration is chosen as M = 0.75 + 0.25ρ2. As time goes
on, the macrophage concentration becomes one everywhere, and the radius of the granuloma shrinks.

In Fig. 4, we show the evolution of the time dependent solution of the system (62) with parameters that satisfy the
conditions of Theorem 4 (λ = 2.7, μ1 = 0.4, μ2 = 1, δ = 0.05, α = 0.5 and β = 0.8). The initial radius is chosen as R(0) =
4.5374 and the initial macrophage concentration is chosen as M = 0.75 + 0.25ρ2 which is the same as the example in
Fig. 3. As time goes on, the macrophage concentration decreases to zero everywhere except for a small region near the
granuloma’s boundary, and, in contrast to the example shown in Fig. 3, the radius of the granuloma increases.

5. Conclusions

In this paper we initiated a study of a simple mathematical model of a generic granuloma. The model consists of a
coupled system of two semi-linear parabolic equations for the macrophage density (M), and the bacterial density (B). The
boundary of the granuloma is a free boundary. We proved the existence and uniqueness of a solution and proceeded to ex-
plore how granulomas evolve. Depending on the biological parameters, we showed that the bacterial load either disappears
over time (Theorem 3 and Remark 1) or persists (Theorems 4 and 5). We have also shown numerically that there exist
unstable stationary solutions.

Five biological parameters determine if the bacterial load and granuloma will grow or shrink: The natural death rate of
the macrophages (α), the growth rate of the bacteria (λ), the flux of the macrophages from the healthy tissue into the gran-
uloma (β), the rate at which bacteria kill macrophages (μ1), and the rate at which macrophages kill bacteria (μ2). Although
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Fig. 3. The time dependent solution for λ = 0.5, μ1 = 0.4, μ2 = 1.5, δ = 0.05, α = 0.5, β = 0.8, and R(0) = 4.5374.

Fig. 4. The time dependent solution for λ = 2.7, μ1 = 0.4, μ2 = 1, δ = 0.05, α = 0.5, β = 0.8, and R(0) = 4.5374.
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the model considered here is a simplification, it is able to capture certain features of real world granulomas. Indeed math-
ematical analysis and numerical simulations of the model indicate that, as in the granulomas of tuberculosis, macrophages
are more prevalent at the granuloma’s edge. The structure of stationary granulomas appears to deteriorate, however, as
the bacterial growth rate increases. This observation is of special interest since unstructured granulomas are a hallmark of
active tuberculosis infections. Future work should (i) better determine parameter regimes in which macrophages and bac-
teria coexist; (ii) rigorously establish the existence of stationary solutions as well as analyze their asymptotic stability; and
(iii) include more realistic models of granulomas.
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